Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
نویسندگان
چکیده مقاله:
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
منابع مشابه
complete convergence of moving-average processes under negative dependence sub-gaussian assumptions
the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملcomplete convergence of moving-average processes under negative dependence sub-gaussian assumptions
the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملComplete convergence of moving average processes under dependence assumptions 1
Let {Yi;-oc < i < c~} be a doubly infinite sequence of identically distributed and (b-mixing random variables, (ai; ~ < i < oc} an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence of {Ek=xn ~io~=_¢xz ai+kYi/nt/,; n>~ 1} under some suitable conditions. AMS classification: 60G50; 60F15
متن کاملOn the Precise Asymptotics in Complete Moment Convergence of Moving Average Processes under NA Random Variables
Let {ε i | − ∞ < i < ∞} be a sequence of identically distributed negatively associated random variables and {a i | − ∞ < i < ∞} a sequence of real numbers with
متن کاملMoving Average Processes with Infinite Variance
The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 3
صفحات 843- 852
تاریخ انتشار 2012-09-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023